

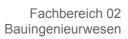
BACHELORARBEIT

Vergleich von räumlichen und ebenen Berechnungen am Beispiel eines Mehrfamilienhauses mit Tiefgarage

Erstprüfer: Prof. Dr.-Ing. W. Moorkamp (FH Aachen)
Zweitprüfer: Dipl.-Ing. A. Meurs (MTM Ingenieure)

Verfasser: Philipp Palm Matrikelnummer: 389364 Fachbereich: Bauingenieurwesen

WS 2013/2014


<u>Inhaltsverzeichnis</u>

	Einleitung					
١.	Grundsätzliche Vor- und Nachteile der (räumlicher) FEM-Modellierung					
	1.1	Allgemeine Probleme	11			
	1.2	Singularitäten	12			
	1.3 Diskretisierung					
	1.4	Kopplung von Elementen unterschiedlicher Typen	15			
	1.5 Änderungen während der Ausführung (Nachteile)					
	1.6					
	1.7					
	1.8	Modellierung von Unterzügen	17			
		1.8.1 Plattenbalken als Stabwerk				
		1.8.2 Plattenbalken im räumlichen System				
		1.8.3 Exzentrischer Anschluss Unterzug-Platte	19			
		Zentrischer Anschluss Unterzug-Platte Zentrischer Anschluss Unterzug-Platte (angepasste Höhe)	∠0 21			
		1.8.6 Vollständige Generierung als Schalenelemente	22			
		1.8.7 Starrkörperkopplung	23			
		1.8.8 Auswertung der Varianten	23			
	1.9 Umsetzung der statisch-konstruktiven Prüfung					
		1.10 Allgemeine Vorteile				
	1.11 Bodenplatten im Gesamtmodell					
	1.12 Dynamische Einwirkung, horizontale Belastungen					
	1.13 Exakte Berücksichtigung der räumlichen Steifigkeiten					
	1.14	Änderungen während der Ausführung (Vorteile)	28			
2.	Pos	itionspläne	29			
		Positionspläne der ebenen Berechnung 2.1.1 Bodenplatte und Verdickungen				
		2.1.2 Kellergeschoss und Tiefgarage				
		2.1.3 Erdgeschoss				
		2.1.4 Obergeschoss	32			
		2.1.5 Dachgeschoss				
	0.0	2.1.6 Galerie				
	2.2	Positionspläne der räumlichen Berechnung				
		2.2.1 Bodenplatte und Verdickungen	35 36			
		Z.2.2 Kellergeschoss und Tiefgarage Z.2.3 Erdgeschoss				
		2.2.4 Obergeschoss				
		2.2.5 Dachgeschoss				
		2.2.6 Galerie				

		2.2.7 Dachstuhl 2.2.8 Treppe	
3.	Stat	tische Berechnung und Bemessung am Gesamtmodell	42
	3.1	Allgemeine Beschreibung	42
	3.2	Annahmen abweichend zur Ausführungsplanung des Architekten	
	3.3	Weiße Wanne	43
	3.4	Expositionsklassen und Baustoffe	
	3.5	Lastannahmen	
		3.5.1 Ständige Lasten	47
		3.5.2 Nutzlasten	
		3.5.3 Schneelasten 3.5.4 Windlasten	
		3.5.5 Wasserdruck	
		3.5.6 Erddruck	
		3.5.7 Außergewöhnliche Lasten	56
	3.6	Bauteilbezogene Lastzusammenstellung	57
		3.6.1 Lastfälle	
		3.6.2 Fundamente	
		3.6.3 Kellergeschoss/Tiefgarage	60 65
		3.6.4 Erd-, Ober-, Dachgeschoss und Galerie 3.6.5 Treppe	
		3.6.6 Dachkonstruktion	
		3.6.7 Kombinationsvorschriften	
	3.7	Sicherheit gegen Aufschwimmen	
	3.8	Mindestbewehrung und Rissbreitenbeschränkung	
		3.8.1 Bodenplatte und Kellerwände	84
		3.8.2 Decke über Kellergeschoss und Tiefgarage	86
		3.8.3 Decke über Erd- und Obergeschoss	86
	2.0	3.8.4 Decke über Dachgeschoss	
	3.9	Auswertung der räumlichen Bemessung	
		3.9.1 Materialien und Bauteildicken 3.9.2 Decke über Dachgeschoss	 20
		3.9.3 Decke über Obergeschoss	93
		3.9.4 Decke über Erdgeschoss	97
		3.9.5 Decke über Kellergeschoss und Tiefgarage	101
		3.9.6 Bodenplatte	106
		3.9.7 Stütze neben dem Aufzugsschacht	112
		3.9.8 Stütze im Dachgeschoss 3.9.9 Maximal belastete Stütze in der Tiefgarage	11∠ 113
		3.9.10 Durchstanznachweis der maximal belasteten Stütze	114
		3.9.11 Maximal belasteter Plattenbalken der Decke über TG	116
		3.9.12 Aufzugschacht	120
		3.9.13 Stahlbetonkellerwände	122
		3.9.14 Treppe	126

		3.9.15 Balkone	128
		3.9.16 Knicknachweis der Balkonstützen	130
		3.9.17 Mauerwerksnachweis	132
	3.10	Erdbeben	134
	3.11	Berücksichtigung der Bauphasen	140
4.	Ebei	ne Berechnung für ausgesuchte Tragwerksteile	144
	4.1	Lastpläne	146
		4.1.1 Lastplan für die Decke über Dachgeschoss	146
		4.1.2 Lastplan für die Decke über Obergeschoss	149
		4.1.3 Lastplan für die Decke über Erdgeschoss	152
		4.1.4 Lastplan für die Decke über Kellergeschoss und Tiefgarage	155
		4.1.5 Lastplan für die Bodenplatte	158
	4.2	Auswertung der ebenen Berechnung und Bemessung	161
		4.2.1 Decke über Dachgeschoss	161
		4.2.2 Decke über Obergeschoss	164
		4.2.3 Decke über Erdgeschoss	167
		4.2.4 Decke über Kellergeschoss und Tiefgarage	170
		4.2.5 Bodenplatte	174
		4.2.6 Maximal belasteter Plattenbalken der Decke über TG	
		4.2.7 Verformungen	
		4.2.8 Stahlbetonkellerwände 4.2.9 Balkone	
5.	_	leich der beiden Berechnungsmodelle hinsichtlich ihrer Vor- und nteile	
	5.1	Vergleich der Allgemeinen Unterschiede	188
	5.2	Vergleich der Verformungen	189
		Vergleich der Bewehrungsmengen	
		Vergleich der Balkonbemessung	
		Fazit	
6.	Zusa	ammenstellung der Ergebnisse als Handlungsempfehlungen	192
7.	Erge	ebnisse der Bachelorarbeit in Form eines Plakates	193
	Resi	ümee	194
	Liter	aturverzeichnis	195
	Aufg	gabenstellung	196

Anlagenordner

Anlage 1	Ausführungs	spläne des Architekten				
Anlage 2	Positionspläne					
Anlage 3	Ebene Berechnung der Dachkonstruktion					
Anlage 4	Nummerisch	ne Rechenergebnisse der räumlichen Modellierung				
	Anlage 4.1	Materialien				
	•	Querschnitte				
	Anlage 4.3	Lastfälle				
	Anlage 4.4	Berechnung von Schnittkräften				
	Anlage 4.5	Grafische Darstellung der Lastfälle				
	Anlage 4.6	Überlagerungen				
	Anlage 4.7	Lastfälle für die Bemessung				
	Anlage 4.8	Auszüge aus der Bemessung				
Anlage 5	Nummerisch	ne Rechenergebnisse der ebenen Berechnung				
	Anlage 5.1	Materialien				
	Anlage 5.2	Querschnitte				
	Anlage 5.3	Lastfälle				
	Anlage 5.4	Grafische Darstellung der Lastfälle				
	•	Überlagerungen				
	•	Lastfälle für die Bemessung				
	Anlage 5.7	Auszüge aus der Bemessung				
Anlage 6	Ergebnisse in Form eines Plakates					

Fachhochschule Aachen University of Applied Sciences

Fachbereich 02 Bauingenieurwesen

Resümee der Arbeit

Die vorliegende Bachelorarbeit beinhaltet den Vergleich von räumlichen und ebenen Berechnungen am Beispiel eines Mehrfamilienhauses mit Tiefgarage. Das 5-geschossige Mehrfamilienhaus besteht aus einem Kellergeschoss, einer Tiefgarage, einem Erdgeschoss, einem Obergeschoss und einem Dachgeschoss sowie einer Galerie. Es ist in Massivbauweise errichtet.

Als Grundlage für die Arbeit liegen die Ausführungspläne des Architekten (Dipl.-Ing. V. Hoch, Architekt BDA) vor. Abweichend zur Ausführungsplanung wird ab einer Höhe von h = +119,00m üNN drückendes Grundwasser angenommen. Außerdem wird das Gebäude fiktiv auf einer gebetteten Bodenplatte gegründet. Weiterhin wird in einem ergänzenden Kapitel eine kurze Erdbebenuntersuchung für die Erdbebenzone 2 durchgeführt.

Die grundsätzlichen Vor- und Nachteile eines FEM-Modells werden behandelt. Es wird deutlich, dass die räumliche FEM-Modellierung ohne tieferes Grundlagenwissen zu Fehlern und nicht realistischen Abbildungen führen kann, die dann eventuell falsch oder gar nicht eingeschätzt werden. Fehlendes Wissen über die Software sowie die Verwendung der Software als "Black-Box" sind nicht angebracht. Jedoch werden auch die Vorteile der räumlichen Modellierung bei richtiger Anwendung deutlich gemacht. So können räumlich komplexe Tragstrukturen realitätsnah generiert werden.

Die Berechnung und Bemessung des räumlichen und ebenen Systems wird mit der Software der Sofistik AG durchgeführt. Sämtliche Berechnungen erfolgen nach den aktuell gültigen Eurocodes. Anschließend werden die Varianten der räumlichen Berechnung und Bemessung einerseits und der ebenen Berechnung und Bemessung anderseits miteinander verglichen und auftretende Unterschiede aus den vorher erwähnten Vor- und Nachteilen benannt und erläutert.

In den Bearbeitungswochen der Bachelorarbeit habe ich die Modellierung eines FEM-Modells gut kennen gelernt und neue Kenntnisse bezüglich der auftretenden Probleme sowie Vorteile erlangt.

Außerdem konnte ich mir Kenntnisse mit dem Umgang der Software der Sofistik AG durch die umfangreichen Berechnungen aneignen sowie meine bisherigen CAD-Kenntnisse aus dem Studium weiter vertiefen.

Ein großer Dank gilt dem Büro MTM Ingenieure, in dem ich mit viel Unterstützung und Bereitstellung verschiedener Arbeitsmaterialien diesen Vergleich der räumlichen und ebenen Berechnung als Thema meiner Bachelorarbeit ausarbeiten durfte.

Abschließend kann gesagt werden, dass eine räumliche Berechnung nur dann Sinn macht, wenn die Randbedingungen komplex genug sind. Einfache mehrgeschossige Gebäude mit üblichen Randbedingungen gehören nicht dazu und sollten mit ebenen Modellen berechnet werden, da der Aufwand einer räumlichen Berechnung zu groß ist. Handelt es sich jedoch um Gebäude in denen die Berücksichtigung der räumlichen Steifigkeiten (z.B. Erdbeben) relevant werden oder um komplexe räumliche Strukturen, ist die Anwendung einer räumlichen Modellierung dringend zu empfehlen.